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A First Example

Problem. Decide if an equation s ≈ t is satisfied by all lattices.

Solution. Decompose inequations . . .

x ≤ x

x ≤ x

x ≤ x ∨ y

x ≤ x ∧ (x ∨ y)
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The Proof System SL

identity axioms

cut rule

s ≤ s
(id)

s ≤ u u ≤ t
s ≤ t

(cut)

left operation rules right operation rules

s1 ≤ t
s1 ∧ s2 ≤ t

(∧≤)1
s ≤ t1

s ≤ t1 ∨ t2
(≤∨)1

s2 ≤ t
s1 ∧ s2 ≤ t

(∧≤)2
s ≤ t2

s ≤ t1 ∨ t2
(≤∨)2

s1 ≤ t s2 ≤ t
s1 ∨ s2 ≤ t

(∨≤)
s ≤ t1 s ≤ t2
s ≤ t1 ∧ t2

(≤∧)
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Soundness, Completeness, and Cut-Elimination

The system SL is sound and complete for the class Lat of lattices, i.e.,

S̀L s ≤ t ⇐⇒ Lat |= s ≤ t ,

and admits cut elimination, yielding

S̀L s ≤ t ⇐⇒ S̀L−(cut) s ≤ t ,

where cuts are ‘pushed upwards’ in derivations until they vanish . . .
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u ≤ u
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...
u ≤ t

u ≤ t
(cut)
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...
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Consequences

It follows that, e.g.,

the equational theory of lattices is decidable

Whitman’s condition is satisfied by all free lattices, i.e.,

Lat |= s∧ t ≤ u∨v =⇒
Lat |= s ≤ u ∨ v or Lat |= t ≤ u ∨ v

or Lat |= s ∧ t ≤ u or Lat |= s ∧ t ≤ v

Lat admits the Craig interpolation property, i.e.,

Lat |= s(x , y) ≤ t(y , z) =⇒
for some ‘interpolant’ i(y),

Lat |= s(x , y) ≤ i(y) ≤ t(y , z).
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This Talk

A proof system for a class of ordered algebras can sometimes be used to
establish (algebraic) properties of the class.

The key idea is to manipulate and obtain new derivations in this system
using proof surgery.

We will focus today on two case studies . . .

(1) establishing the amalgamation property via Craig interpolation

(2) establishing densifiability via density elimination.
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Case Study (1): Amalgamation and Interpolation

Does some class of algebras K have the amalgamation property ?

B1

B2

A
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A Problem in Logic

Does some logic L corresponding to K admit interpolation ?

s(x , y)

L̀ u(y)

L̀ t(y , z)

variables of s variables of t
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A Bridge Theorem

K has the amalgamation property ⇐⇒ L admits interpolation

George Metcalfe (University of Bern) Proof Surgery 23. August 2024 12 / 45



Commutative Residuated Lattices

A commutative residuated lattice (or CRL) is an algebraic structure

A = 〈A,∧,∨, ·,→, e〉

satisfying the following conditions:

(i) 〈A,∧,∨〉 is a lattice;

(ii) 〈A, ·, e〉 is a commutative monoid;

(iii) a ≤ b → c ⇐⇒ a · b ≤ c for all a, b, c ∈ A.

The class CRL of all CRLs forms a variety; that is, it can be defined by a
(finite) set of equations — or equivalently, it is closed under taking
homomorphic images, subalgebras, and products.
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Substructural Logics

Varieties of (pointed) (commutative) residuated lattices provide algebraic
semantics for substructural logics, including

(intuitionistic) linear logic without exponentials;

relevance logics;

Łukasiewicz logic and other many-valued logics;

classical logic, intuitionistic logic, and everything inbetween;

the Full Lambek calculus.

Also covered by this framework are well-studied ordered algebras such as
lattice-ordered groups and residuated lattices of ideals of rings.
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Also covered by this framework are well-studied ordered algebras such as
lattice-ordered groups and residuated lattices of ideals of rings.
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The Amalgamation Property

A variety V has the amalgamation property if for any A,B1,B2 ∈ V and
embeddings i : A→ B1 and j : A→ B2,

there exist a C ∈ V and
embeddings h : B1 → C and k : B2 → C satisfying h ◦ i = k ◦ j .

B1

A C

B2
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j k
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Our Question

Does CRL have the amalgamation property ?

George Metcalfe (University of Bern) Proof Surgery 23. August 2024 16 / 45



Craig Interpolation Property

A variety V of CRLs is said to have the Craig interpolation property if

V |= s(x , y) ≤ t(y , z) =⇒

for some ‘interpolant’ i(y),

V |= s(x , y) ≤ i(y) ≤ t(y , z).

Theorem
If a variety of CRLs has the Craig interpolation property, then it has the
amalgamation property.

We establish the Craig interpolation property — and hence also the
amalgamation property — for CRL by performing proof surgery on
derivations in a suitable sequent calculus.
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Sequents

For the purposes of this talk, a sequent is an ordered pair consisting of a
finite multiset of terms [s1, . . . , sn] and a term t,

written

s1, . . . , sn ⇒ t,

and interpreted as s1 · · · sn ≤ t (where s1 · · · sn := e for n = 0).

We denote arbitrary finite multisets of terms by Γ,Π, . . . , ignore brackets,
and write Γ,Π to denote the multiset union of Γ and Π.
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A Sequent Calculus for Lattices

identity axioms cut rule

t ⇒ t
(id)

Γ⇒ u Π, u ⇒ t

Γ,Π⇒ t
(cut)

left operation rules right operation rules

Γ, si ⇒ t

Γ, s1 ∧ s2 ⇒ t
(∧⇒)i∈{1,2}

Γ⇒ t1 Γ⇒ t2
Γ⇒ t1 ∧ t2

(⇒∧)

Γ, s1 ⇒ t Γ, s2 ⇒ t

Γ, s1 ∨ s2 ⇒ t
(∨⇒)

Γ⇒ ti
Γ⇒ t1 ∨ t2

(⇒∨)i∈{1,2}

Γ, s1, s2 ⇒ t

Γ, s1 · s2 ⇒ t
(·⇒)

Γ⇒ t1 Π⇒ t2
Γ,Π⇒ t1 · t2

(⇒·)

Π⇒ t Γ, s ⇒ u

Γ,Π, t → s ⇒ u
(→⇒)

Γ, s ⇒ t

Γ⇒ s → t
(⇒→)

Γ⇒ t
Γ, e⇒ t

(e⇒)
⇒ e

(⇒e)

George Metcalfe (University of Bern) Proof Surgery 23. August 2024 19 / 45



A Sequent Calculus SCRL for CRL

identity axioms cut rule

t ⇒ t
(id)

Γ⇒ u Π, u ⇒ t

Γ,Π⇒ t
(cut)

left operation rules right operation rules

Γ, si ⇒ t

Γ, s1 ∧ s2 ⇒ t
(∧⇒)i∈{1,2}

Γ⇒ t1 Γ⇒ t2
Γ⇒ t1 ∧ t2

(⇒∧)

Γ, s1 ⇒ t Γ, s2 ⇒ t

Γ, s1 ∨ s2 ⇒ t
(∨⇒)

Γ⇒ ti
Γ⇒ t1 ∨ t2

(⇒∨)i∈{1,2}

Γ, s1, s2 ⇒ t

Γ, s1 · s2 ⇒ t
(·⇒)

Γ⇒ t1 Π⇒ t2
Γ,Π⇒ t1 · t2

(⇒·)

Π⇒ t Γ, s ⇒ u

Γ,Π, t → s ⇒ u
(→⇒)

Γ, s ⇒ t

Γ⇒ s → t
(⇒→)

Γ⇒ t
Γ, e⇒ t

(e⇒)
⇒ e

(⇒e)

George Metcalfe (University of Bern) Proof Surgery 23. August 2024 19 / 45



A Sequent Calculus SCRL for CRL

identity axioms cut rule

t ⇒ t
(id)

Γ⇒ u Π, u ⇒ t

Γ,Π⇒ t
(cut)

left operation rules right operation rules

Γ, si ⇒ t

Γ, s1 ∧ s2 ⇒ t
(∧⇒)i∈{1,2}

Γ⇒ t1 Γ⇒ t2
Γ⇒ t1 ∧ t2

(⇒∧)

Γ, s1 ⇒ t Γ, s2 ⇒ t

Γ, s1 ∨ s2 ⇒ t
(∨⇒)

Γ⇒ ti
Γ⇒ t1 ∨ t2

(⇒∨)i∈{1,2}

Γ, s1, s2 ⇒ t

Γ, s1 · s2 ⇒ t
(·⇒)

Γ⇒ t1 Π⇒ t2
Γ,Π⇒ t1 · t2

(⇒·)

Π⇒ t Γ, s ⇒ u

Γ,Π, t → s ⇒ u
(→⇒)

Γ, s ⇒ t

Γ⇒ s → t
(⇒→)

Γ⇒ t
Γ, e⇒ t

(e⇒)
⇒ e

(⇒e)

George Metcalfe (University of Bern) Proof Surgery 23. August 2024 19 / 45



A Sequent Calculus SCRL for CRL

identity axioms cut rule

t ⇒ t
(id)

Γ⇒ u Π, u ⇒ t

Γ,Π⇒ t
(cut)

left operation rules right operation rules

Γ, si ⇒ t

Γ, s1 ∧ s2 ⇒ t
(∧⇒)i∈{1,2}

Γ⇒ t1 Γ⇒ t2
Γ⇒ t1 ∧ t2

(⇒∧)

Γ, s1 ⇒ t Γ, s2 ⇒ t

Γ, s1 ∨ s2 ⇒ t
(∨⇒)

Γ⇒ ti
Γ⇒ t1 ∨ t2

(⇒∨)i∈{1,2}

Γ, s1, s2 ⇒ t

Γ, s1 · s2 ⇒ t
(·⇒)

Γ⇒ t1 Π⇒ t2
Γ,Π⇒ t1 · t2

(⇒·)

Π⇒ t Γ, s ⇒ u

Γ,Π, t → s ⇒ u
(→⇒)

Γ, s ⇒ t

Γ⇒ s → t
(⇒→)

Γ⇒ t
Γ, e⇒ t

(e⇒)
⇒ e

(⇒e)

George Metcalfe (University of Bern) Proof Surgery 23. August 2024 19 / 45



An Example Derivation

x ⇒ x
(id)

y ⇒ y
(id)

x → y , x ⇒ y
(→⇒)

x → y , x ⇒ y ∨ z
(⇒∨)1

x ⇒ x
(id)

z ⇒ z
(id)

x → z , x ⇒ z
(→⇒)

x → z , x ⇒ y ∨ z
(⇒∨)2

(x → y) ∨ (x → z), x ⇒ y ∨ z
(∨⇒)

(x → y) ∨ (x → z)⇒ x → (y ∨ z)
(⇒→)

⇒ ((x → y) ∨ (x → z))→ (x → (y ∨ z))
(⇒→)
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Soundness, Completeness, and Cut-Elimination

The system SCRL is sound and complete for the variety CRL,

i.e.,

S̀CRL s1, . . . , sn ⇒ t ⇐⇒ CRL |= s1 · · · sn ≤ t,

and admits cut elimination, yielding

S̀CRL Γ⇒ t ⇐⇒ S̀CRL−(cut) Γ⇒ t,

where cuts are again ‘pushed upwards’ in derivations until they vanish.

It follows directly that the equational theory of CRL is decidable.
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Craig Interpolation for CRL

Theorem
CRL has the Craig interpolation property.

Proof sketch. We prove that if S̀CRL−(cut) Γ(x , y),Π(y , z)⇒ t(y , z), then

S̀CRL−(cut) Γ(x , y)⇒ i(y) and S̀CRL−(cut) Π(y , z), i(y)⇒ t(y , z),

for some term i(y), proceeding by induction on the height of a derivation.

Base case. E.g., if Γ,Π⇒ t is an instance of (id), then either Γ is t, Π is
empty, and we let i(y) := t, or Γ is empty, Π is t, and we let i(y) := e.
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Craig Interpolation for CRL

For the inductive step, we consider the last rule applied in the derivation.

Let us just treat the paradigmatic case of implication, other cases being
very similar. Suppose first that t is s → t ′ and the derivation ends with

...
Γ,Π, s ⇒ t ′

Γ,Π⇒ s → t ′.
(⇒→)

By the induction hypothesis, there exists a term i(y) such that

S̀CRL−(cut) Γ⇒ i(y) and S̀CRL−(cut) Π, i(y), s ⇒ t ′,

and hence, by an application of (⇒→), also

S̀CRL−(cut) Π, i(y)⇒ s → t ′.
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Craig Interpolation for CRL
Suppose now that the derivation ends with

...
Γ1,Π1 ⇒ t ′

...
Γ2,Π2, s ⇒ t

Γ1, Γ2, t
′ → s,Π1,Π2 ⇒ t.

(→⇒)

Assume first that Γ is Γ1, Γ2 and Π is t ′ → s,Π1,Π2. By the induction
hypothesis twice, there exist terms i1(y), i2(y) such that the following
sequents are derivable in SCRL− (cut):

Γ1 ⇒ i1, Γ2 ⇒ i2, Π1, i1 ⇒ t ′, and Π2, s, i2 ⇒ t.

Defining i := i1 · i2, we obtain derivations in SCRL− (cut)

...
Γ1 ⇒ i1

...
Γ2 ⇒ i2

Γ1, Γ2 ⇒ i1 · i2
(⇒·)

...
Π1, i1 ⇒ t ′

...
Π2, s, i2 ⇒ t

Π1,Π2, t
′ → s, i1, i2 ⇒ t

(→⇒)

Π1,Π2, t
′ → s, i1 · i2 ⇒ t.

(·⇒)
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Craig Interpolation for CRL
Now assume that Γ is Γ1, Γ2, t

′ → s and Π is Π1,Π2.

Considering
Γ1,Π1 ⇒ t ′, we associate Γ1 with t ′, and the induction hypothesis yields a
term i1(y) such that the following sequents are derivable in SCRL− (cut):

Π1 ⇒ i1 and Γ1, i1 ⇒ t ′.

Considering Γ2,Π2, s ⇒ t, the induction hypothesis yields a term i2(y)
such that the following sequents are derivable in SCRL− (cut):

Γ2, s ⇒ i2 and Π2, i2 ⇒ t.

Defining i := i1 → i2, we obtain derivations in SCRL− (cut)
...

Γ1, i1 ⇒ t ′

...
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Amalgamation

Corollary
The variety CRL has the amalgamation property.

This method can be used to establish the amalgamation property for many
other varieties of CRLs; algebraic methods can also be used in many cases
(in particular, to establish failure) but no algebraic proof is known for CRL.
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An Ad Break

For more on residuated lattices and substructural logics, consult . . .
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Case Study (2): Densifiability and Density Elimination

When do the chains of a variety V embed into dense chains in V ?
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Chains and Dense Chains

Let V be any variety of CRLs

and denote by Vc and Vd the classes of
chains (totally ordered algebras) and dense chains of V, respectively.

We call V semilinear if every member of V embeds into a product of
members of Vc, or, equivalently,

V |= s ≈ t ⇐⇒ Vc |= s ≈ t.

We call V densifiable if it is semilinear and every member of Vc embeds
into some member of Vd, or, equivalently,

Vc |= s ≈ t ⇐⇒ Vd |= s ≈ t.

Proving that a semilinear variety of CRLs is densifiable is the crucial step for
establishing standard completeness of a corresponding (fuzzy) logic, i.e.,
completeness with respect to algebras with lattice reduct 〈[0, 1],min,max〉.
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into some member of Vd, or, equivalently,

Vc |= s ≈ t ⇐⇒ Vd |= s ≈ t.

Proving that a semilinear variety of CRLs is densifiable is the crucial step for
establishing standard completeness of a corresponding (fuzzy) logic, i.e.,
completeness with respect to algebras with lattice reduct 〈[0, 1],min,max〉.
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Semilinear Commutative Residuated Lattices

Semilinear CRLs form a variety SemCRL

axiomatized relative to CRL by

x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ z) and e ≤ (x → y) ∨ (y → x).

Hence these classes have the same equational theory, i.e.,

SemCRL |= s ≈ t ⇐⇒ CRLc |= s ≈ t.

But is SemCRL densifiable ? That is, can we prove that

CRLc |= s ≈ t ⇐⇒ CRLd |= s ≈ t ?
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Two Approaches

Semantically . . .

Prove directly that each A ∈ CRLc embeds into some B ∈ CRLd.

Syntactically . . .

Prove that every derivation in some proof system for CRLd can be
transformed into a derivation in some proof system for CRLc.
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Hypersequents

A hypersequent is a finite multiset of sequents, written

Γ1 ⇒ t1 | · · · | Γm ⇒ tm,

where ‘|’ is interpreted as a meta-level disjunction.

We denote arbitrary hypersequents by G,H, . . . and ignore brackets.
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Hypersequent Rules

The hypersequent version of a sequent rule adds a ‘context’,

e.g.,

G |

t ⇒ t
(id)

G |

Γ⇒ u

G |

Π, u ⇒ t

G |

Γ,Π⇒ t
(cut)

G |

Π⇒ t

G |

Γ, s ⇒ u

G |

Γ,Π, t → s ⇒ u
(→⇒)

G |

Γ, s ⇒ t

G |

Γ⇒ s → t
(⇒→)
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A Hypersequent Calculus for CRLc

The hypersequent calculus SCRLc consists of

the hypersequent versions of the rules of SCRL

the external weakening and external contraction rules

G
G | H

(ew)
G | H | H
G | H

(ec)

and the communication rule

G | Γ1,Π1 ⇒ t1 G | Γ2,Π2 ⇒ t2
G | Γ1, Γ2 ⇒ t1 | Π1,Π2 ⇒ t2

(com)
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An Example Derivation in SCRLc

x ⇒ x
(id)

y ⇒ y
(id)

x ⇒ y | y ⇒ x
(com)

x ⇒ y | ⇒ y → x
(⇒→)

⇒ x → y | ⇒ y → x
(⇒→)

⇒ x → y | ⇒ (x → y) ∨ (y → x)
(⇒∨)2

⇒ (x → y) ∨ (y → x) | ⇒ (x → y) ∨ (y → x)
(⇒∨)1

⇒ (x → y) ∨ (y → x)
(ec)
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Soundness, Completeness, and Cut-Elimination

The system SCRLc is sound and complete for CRLc,

i.e.,

S̀CRLc S1 | · · · | Sm ⇐⇒ CRLc |= e ≤ S?1 ∨ · · · ∨ S?m,

where (s1, . . . , sn ⇒ t)? := (s1 · · · sn)→ t.

Moreover, this system admits cut elimination, yielding

S̀CRLc G ⇐⇒ S̀CRLc−(cut) G,

where cuts are again ‘pushed upwards’ in derivations until they vanish.

It does not follow, however, that the equational theory of CRLc

(equivalently, SemCRL) is decidable — this is an open problem!
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The Idea

We extend SCRLc with a ‘density rule’ to get SCRLd

such that

S̀CRLd S1 | · · · | Sm ⇐⇒ CRLd |= e ≤ S?1 ∨ · · · ∨ S?m

and establish density elimination, yielding

S̀CRLd G ⇐⇒ S̀CRLc G.

Putting everything together, we obtain

CRLd |= s ≤ t ⇐⇒ S̀CRLd s ⇒ t

⇐⇒ S̀CRLc s ⇒ t

⇐⇒ CRLc |= s ≤ t.
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The Density Rule

Let SCRLd consist of SCRLc extended with

G | Γ⇒ x | x ,Π⇒ t

G | Γ,Π⇒ t
(density)

where x does not occur in the conclusion.

George Metcalfe (University of Bern) Proof Surgery 23. August 2024 38 / 45



Proof Surgery (1)

Suppose that we have a derivation ending with
...

Γ⇒ x | x ,Π⇒ t

Γ,Π⇒ t
(density)

Replacing x asymetrically on the left by Γ and on the right by Π and t yields
...

Γ,Π⇒ t | Γ,Π⇒ t

Γ,Π⇒ t

We obtain a finite tree of hypersequents ending with an application of (ec)
that may not be a derivation; applications of operation rules are preserved,
but (com) can cause problems . . .
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Proof Surgery (2)

For example, we could have a derivation ending with

x ⇒ x
(id)

...
Γ,Π⇒ t

Γ⇒ x | x ,Π⇒ t
(com)

Γ,Π⇒ t
(density)

Replacing xs as before, we get

Γ,Π⇒ t

...
Γ,Π⇒ t

Γ,Π⇒ t | Γ,Π⇒ t
(com)

Γ,Π⇒ t

Clearly, we can just remove the application of (com). More generally, we
can use (cut) and cut elimination to repair derivations . . .
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Density Elimination

To establish density elimination, obtaining in particular,

S̀CRLd G ⇐⇒ S̀CRLc G,

we define for hypersequents

G = ([Γi ⇒ x ]ni=1 | [Πj , [x ]λj ⇒ tj ]
m
j=1 | [Π′k , [x ]µk+1 ⇒ x ]lk=1)

H = (H′ | Γ⇒ x | Π, x ⇒ t)

where x does not occur in the Γi s, Πjs, tjs, Π′ks, H′, Γ, Π, or t,

(G,H)d := (H′ | [Γi ,Π⇒ t]ni=1 | [Πj , Γλj ⇒ tj ]
m
j=1 | [Π′k , Γµk ⇒ e]lk=1),

and prove (constructively) that

S̀CRLc−(cut) G and S̀CRLc−(cut) H =⇒ S̀CRLc (G,H)d | Γ,Π⇒ t.

The result follows by considering G = H = (H′ | Γ⇒ x | Π, x ⇒ t).
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Densifiability

Theorem
SemCRL is densifiable.

This method can be used to establish densifiability for many other varieties
of semilinear CRLs; algebraic methods can also be applied in many cases
but the ‘algebraic’ proofs for SemCRL are inspired by density elimination.

Moreover, the densifiability of the variety of ‘involutive’ semilinear CRLs is
an open problem . . .
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Coda: Dropping Commutativity

A residuated lattice (or RL) is an algebraic structure 〈A,∧,∨, ·, \, /, e〉
such that 〈A,∧,∨〉 is a lattice, 〈A, ·, e〉 is a monoid, and for all a, b, c ∈ A,

a ≤ c/b ⇐⇒ a · b ≤ c ⇐⇒ b ≤ a\c.

The class of RLs forms a variety RL and the corresponding sequent
calculus admits cut elimination. However, . . .

the Craig interpolation property can be established for RL, but does
not imply the amalgamation property — this is an open problem!

there is a hypersequent calculus for RLc, but the variety of semilinear
RLs is not densifiable — obtaining an equational axiomatization for
the variety generated by RLd is an open problem!
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Concluding Remarks

Proof surgery — manipulating derivations in a suitable proof system
— can be used to establish properties of classes of algebraic structures.

The general methods of algebraic proof theory provides suitable
proof systems for broad classes of ordered algebras associated with
non-classical logics, and other systems can be developed ad hoc.

However, we would also like to obtain general methods for using proof
surgery to establish algebraic properties of ordered algebras, and
understand these proof-theoretic methods algebraically.
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Closing Credits

For further details and references, consult . . .
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